Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
ACS Omega ; 9(13): 15114-15133, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585049

RESUMO

Platelet-derived growth factor-BB (PDGF-BB) is a polypeptide growth factor generated by platelet granules faced to cytokines. It plays a role in forming and remodeling various tissue types, including epithelial tissue, through interaction with cell-surface receptors on most mesenchymal origin cells. However, it breaks down quickly in biological fluids, emphasizing the importance of preserving them from biodegradation. To address this challenge, we formulated and evaluated PDGF-encapsulated nanospheres (PD@PCEC) using polycaprolactone-polyethylene glycol-polycaprolactone. PD@PCECs were fabricated through the triple emulsion methodology and optimized by using the Box-Behnken design. The encapsulation efficiency (EE) of nanoencapsulated PDGF-BB was investigated concerning four variables: stirring rate (X1), stirring duration (X2), poly(vinyl alcohol) concentration (X3), and PDGF-BB concentration (X4). The selected optimized nanospheres were integrated into a gelatin-collagen scaffold (PD@PCEC@GC) and assessed for morphology, biocompatibility, in vitro release, and differentiation-inducing activity in human adipose-derived stem cells (hADSCs). The optimized PD@PCEC nanospheres exhibited a particle size of 177.9 ± 91 nm, a zeta potential of 5.2 mV, and an EE of 87.7 ± 0.44%. The release profile demonstrated approximately 85% of loaded PDGF-BB released during the first 360 h, with a sustained release over the entire 504 h period, maintaining bioactivity of 87.3%. The study also included an evaluation of the physicochemical properties of the scaffolds and an assessment of hADSC adhesion to the scaffold's surface. Additionally, hADSCs cultivated within the scaffold effectively differentiated into keratinocyte-like cells (KLCs) over 21 days, evidenced by morphological changes and upregulation of keratinocyte-specific genes, including cytokeratin 18, cytokeratin 19, and involucrin, at both transcriptional and protein levels.

2.
Heliyon ; 10(8): e29333, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638994

RESUMO

Hepatocellular carcinoma (HCC) is the most frequent form of liver malignancy, and curing it is very challenging. Restoring tumor suppressor microRNAs could trigger the initiation of cellular anticancer mechanisms. Exosomes are nanosized biocarriers capable of fusing with cell membranes and delivering their cargo. The main goal of the current study was to explore the potential of human embryonic kidney cells (HEK293) cell-derived exosomes to provide an anticancer therapy based on the restoration of tumor suppressor miR-365a downregulated in HepG2 cells. To accomplish this aim, exosomes were isolated from the HEK293 cell line culture and characterized, enriched by Homo sapiens (hsa) miR-365a-3p mimics. Exosomes enabled an efficient loading and intracellular delivery of hsa-miR-365a mimics, which translated into G0/G1 cell cycle arrest, induction of oxidative stress, reduction of migration capacity, and high apoptosis rate. The findings indicate that the delivery of miR-365a-3p by HEK293-derived exosomes may act as an innovative and effective therapeutic strategy against HCC.

3.
ACS Omega ; 9(9): 10875-10885, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463340

RESUMO

Chemotherapy is widely used for cancer therapy; however, its efficacy is limited due to poor targeting specificity and severe side effects. Currently, the next generations of delivery systems with multitasking potential have attracted significant attention for cancer therapy. This study reports on the design and synthesis of a multifunctional nanoplatform based on niosomes (NIO) coloaded with paclitaxel (PTX), a chemotherapeutic drug commonly used to treat breast cancer, and sodium oxamate (SO), a glycolytic inhibitor to enhance the cytotoxicity of anticancer drug, along with quantum dots (QD) as bioimaging agents, and hyaluronic acid (HA) coating for active targeting. HN@QPS nanoparticles with a size of ∼150 nm and a surface charge of -39.9 mV with more than 90% EE for PTX were synthesized. Codelivery of SO with PTX remarkably boosted the anticancer effects of PTX, achieving IC50 values of 1-5 and >0.5 ppm for HN@QP and HN@QPS, respectively. Further, HN@QPS treatment enhanced the apoptosis rate by more than 70% in MCF-7 breast cancer cells without significant cytotoxicity on HHF-2 normal cells. Also, quantification of mitochondrial fluorescence showed efficient toxicity against MCF-7 cells. Moreover, the cellular uptake evaluation demonstrated an improved uptake of HN@Q in MCF-7 cells. Taken together, this preliminary research indicated the potential of HN@QPS as an efficient targeted-dual drug delivery nanotheranostic against breast cancer cells.

4.
Int J Biol Macromol ; 265(Pt 1): 130641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460623

RESUMO

Due to its involvement in skin maintenance and repair, topical administration of recombinant human growth hormone (rhGH) is an interesting strategy for therapeutic purposes. We have formulated and characterized a topical rhGH-loaded liposomal formulation (rhGH-Lip) and evaluated its safety, biological activity, and preventive role against UVB-induced skin damage. The rhGH-Lip had an average size and zeta potential of 63 nm and -33 mV, respectively, with 70 % encapsulation efficiency. The formulation was stable at 4 °C for at least one year. The SDS-PAGE and circular dichroism results showed no structural alterations in rhGH upon encapsulation. In vitro, studies in HaCaT, HFFF-2, and Ba/F3-rhGHR cell lines confirmed the safety and biological activity of rhGH-Lip. Franz diffusion cell study showed increased rhGH skin permeation compared to free rhGH. Animal studies in nude mice showed that liposomal rhGH prevented UVB-induced epidermal hyperplasia, angiogenesis, wrinkle formation, and collagen loss, as well as improving skin moisture. The results of this study show that rhGH-Lip is a stable, safe, and effective skin delivery system and has potential as an anti-wrinkle formulation for topical application. This study also provides a new method for the topical delivery of proteins and merits further investigation.


Assuntos
Hormônio do Crescimento Humano , Camundongos , Animais , Humanos , Hormônio do Crescimento Humano/farmacologia , Hormônio do Crescimento Humano/metabolismo , Camundongos Nus , Pele/metabolismo , Lipossomos/metabolismo , Absorção Cutânea
5.
Exp Cell Res ; 435(1): 113926, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228225

RESUMO

The present research aims to evaluate the efficacy of Silibinin-loaded mesoporous silica nanoparticles (Sil@MSNs) immobilized into polylactic-co-glycolic acid/Collagen (PLGA/Col) nanofibers on the in vitro proliferation of adipose-derived stem cells (ASCs) and cellular senescence. Here, the fabricated electrospun PLGA/Col composite scaffolds were coated with Sil@MSNs and their physicochemical properties were examined by FTIR, FE-SEM, and TGA. The growth, viability and proliferation of ASCs were investigated using various biological assays including PicoGreen, MTT, and RT-PCR after 21 days. The proliferation and adhesion of ASCs were supported by the biological and mechanical characteristics of the Sil@MSNs PLGA/Col composite scaffolds, according to FE- SEM. PicoGreen and cytotoxicity analysis showed an increase in the rate of proliferation and metabolic activity of hADSCs after 14 and 21 days, confirming the initial and controlled release of Sil from nanofibers. Gene expression analysis further confirmed the increased expression of stemness markers as well as hTERT and telomerase in ASCs seeded on Sil@MSNs PLGA/Col nanofibers compared to the control group. Ultimately, the findings of the present study introduced Sil@MSNs PLGA/Col composite scaffolds as an efficient platform for long-term proliferation of ASCs in tissue engineering.


Assuntos
Nanofibras , Tecidos Suporte , Adesão Celular , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Silibina/farmacologia , Tecidos Suporte/química , Nanofibras/química , Colágeno/farmacologia , Colágeno/química , Engenharia Tecidual , Células-Tronco , Proliferação de Células , Células Cultivadas , Compostos Orgânicos
6.
Stem Cell Rev Rep ; 20(1): 362-393, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37922106

RESUMO

To improve wound healing or treatment of other skin diseases, and provide model cells for skin biology studies, in vitro differentiation of stem cells into keratinocyte-like cells (KLCs) is very desirable in regenerative medicine. This study examined the most recent advancements in in vitro differentiation of stem cells into KLCs, the effect of biofactors, procedures, and preparation for upcoming clinical cases. A range of stem cells with different origins could be differentiated into KLCs under appropriate conditions. The most effective ways of stem cell differentiation into keratinocytes were found to include the co-culture with primary epithelial cells and keratinocytes, and a cocktail of growth factors, cytokines, and small molecules. KLCs should also be supported by biomaterials for the extracellular matrix (ECM), which replicate the composition and functionality of the in vivo extracellular matrix (ECM) and, thus, support their phenotypic and functional characteristics. The detailed efficient characterization of different factors, and their combinations, could make it possible to find the significant inducers for stem cell differentiation into epidermal lineage. Moreover, it allows the development of chemically known media for directing multi-step differentiation procedures.In conclusion, the differentiation of stem cells to KLCs is feasible and KLCs were used in experimental, preclinical, and clinical trials. However, the translation of KLCs from in vitro investigational system to clinically valuable cells is challenging and extremely slow.


Assuntos
Queratinócitos , Pele , Diferenciação Celular , Epiderme , Matriz Extracelular/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38051471

RESUMO

Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.

8.
Biomed Pharmacother ; 168: 115777, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913732

RESUMO

End-stage of liver fibrosis as a precancerous state could lead to cirrhosis and hepatocellular carcinoma which liver transplantation is the only effective treatment. Previous studies have indicated that farnesoid X receptor (FXR) agonists, such as obeticholic acid (OCA) protect against hepatic injuries. However, free OCA administration results in side effects in clinical trials that could be alleviated by applying bio carriers such as MSC-derived exosomes (Exo) with the potential to mimic the biological regenerative effect of their parent cells, as proposed in this study. Loading OCA into the Exo was conducted via water bath sonication. Ex vivo bio distribution studies validated the Exo-loaded OCA more permanently accumulated in the liver. Using CCL4-induced liver fibrosis, we proposed whether Exo isolated from human Warton's Jelly mesenchymal stem cells loaded with a minimal dosage of OCA can facilitate liver recovery. Notably, Exo-loaded OCA exerted additive anti-fibrotic efficacy on histopathological features in CCL4-induced fibrotic mice. Compared to baseline, Exo-mediated delivery OCA results in marked improvements in the fibrotic-related indicators as well as serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations. Accordingly, the synergistic impact of Exo-loaded OCA as a promising approach is associated with the inactivation of hepatic stellate cells (HSCs), extracellular matrix (ECM) remodeling, and Fxr-Cyp7a1 cascade on CCL4-induced liver fibrosis mice. In conclusion, our data confirmed the additive protective effects of Exo-loaded OCA in fibrotic mice, which suggests a valuable therapeutic strategy to combat liver fibrosis. Furthermore, the use of Exo for accurate drug delivery to the liver tissue can be inspiring.


Assuntos
Exossomos , Camundongos , Humanos , Animais , Exossomos/metabolismo , Cirrose Hepática/metabolismo , Fígado , Fibrose , Transdução de Sinais , Matriz Extracelular/metabolismo
9.
PLoS One ; 18(11): e0293335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917782

RESUMO

OBJECTIVE: Thyroid Cancer (TC) is the most frequent endocrine malignancy neoplasm. It is the sixth cause of cancer in women worldwide. The treatment process could be expedited by identifying the controlling molecular mechanisms at the early and late stages, which can contribute to the acceleration of treatment schemes and the improvement of patient survival outcomes. In this work, we study the significant mRNAs through Machine Learning Algorithms in both the early and late stages of Papillary Thyroid Cancer (PTC). METHOD: During the course of our study, we investigated various methods and techniques to obtain suitable results. The sequence of procedures we followed included organizing data, using nested cross-validation, data cleaning, and normalization at the initial stage. Next, to apply feature selection, a t-test and binary Non-Dominated Sorting Genetic Algorithm II (NSGAII) were chosen to be employed. Later on, during the analysis stage, the discriminative power of the selected features was evaluated using machine learning and deep learning algorithms. Finally, we considered the selected features and utilized Association Rule Mining algorithm to identify the most important ones for improving the decoding of dominant molecular mechanisms in PTC through its early and late stages. RESULT: The SVM classifier was able to distinguish between early and late-stage categories with an accuracy of 83.5% and an AUC of 0.78 based on the identified mRNAs. The most significant genes associated with the early and late stages of PTC were identified as (e.g., ZNF518B, DTD2, CCAR1) and (e.g., lnc-DNAJB6-7:7, RP11-484D2.3, MSL3P1), respectively. CONCLUSION: Current study reveals a clear picture of the potential candidate genes that could play a major role not only in the early stage, but also throughout the late one. Hence, the findings could be of help to identify therapeutic targets for more effective PTC drug developments.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Feminino , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Algoritmos , Mineração de Dados , Proteínas de Ciclo Celular , Proteínas Reguladoras de Apoptose , Proteínas do Tecido Nervoso , Chaperonas Moleculares , Proteínas de Choque Térmico HSP40
10.
J Biol Eng ; 17(1): 58, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749603

RESUMO

A number of molecular biofactors have been documented in pathogenesis and poor prognosis of colorectal cancer (CRC). Among them, the Hypoxia-Inducible Factor (HIF-1a) is frequently reported to become over-expressed, and its targeting could restrict and control a variety of essential hallmarks of CRC. Niosomes are innovative drug delivery vehicles with the encapsulating capacity for co-loading both hydrophilic and hydrophobic drugs at the same time. Also, they can enhance the local accumulation while minimizing the dose and side effects of drugs. YC-1 and PX-12 are two inhibitors of HIF-1a. The purpose of this work was to synthesize dual-loaded YC-1 and PX-12 niosomes to efficiently target HIF-1α in CRC, HT-29 cells. The niosomes were prepared by the thin-film hydration method, then the niosomal formulation of YC-1 and PX-12 (NIO/PX-YC) was developed and optimized by the central composition method (CCD) using the Box-Behnken design in terms of size, polydispersity index (PDI), entrapment efficiency (EE). Also, they are characterized by DLS, FESEM, and TEM microscopy, as well as FTIR spectroscopy. Additionally, entrapment efficiency, in vitro drug release kinetics, and stability were assessed. Cytotoxicity, apoptosis, and cell cycle studies were performed after the treatment of HT-29 cells with NIO/PX-YC. The expression of HIF-1αat both mRNA and protein levels were studied after NIO/PX-YC treatment. The prepared NIO/PX-YC showed a mean particle size of 185 nm with a zeta potential of about-7.10 mv and a spherical morphology. Also, PX-12 and YC-1 represented the entrapment efficiency of about %78 and %91, respectively, with a sustainable and controllable release. The greater effect of NIO/PX-YC than the free state of PX-YC on the cell survival rate, cell apoptosis, and HIF-1α gene/protein expression were detected (p < 0.05). In conclusion, dual loading of niosomes with YC-1 and PX-12 enhanced the effect of drugs on HIF-1α inhibition, thus boosting their anticancer effects.

11.
Front Pharmacol ; 14: 1174120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441534

RESUMO

Introduction: In recent years, various nanoparticles (NPs) have been discovered and synthesized for the targeted therapy of cancer cells. Targeted delivery increases the local concentration of therapeutics and minimizes side effects. Therefore, NPs-mediated targeted drug delivery systems have become a promising approach for the treatment of various cancers. As a result, in the current study, we aimed to design silibinin-loaded magnetic niosomes nanoparticles (MNNPs) and investigate their cytotoxicity property in colorectal cancer cell treatment. Methods: MNPs ferrofluids were prepared and encapsulated into niosomes (NIOs) by the thin film hydration method. Afterward, the morphology, size, and chemical structure of the synthesized MNNPs were evaluated using the TEM, DLS, and FT-IR techniques, respectively. Results and Discussion: The distribution number of MNNPs was obtained at about 50 nm and 70 nm with a surface charge of -19.0 mV by TEM and DLS analysis, respectively. Silibinin loading efficiency in NIOs was about 90%, and the drug release pattern showed a controlled release with a maximum amount of about 49% and 70%, within 4 h in pH = 7.4 and pH = 5.8, respectively. To investigate the cytotoxicity effect, HT-29 cells were treated with the various concentration of the drugs for 24 and 48 h and evaluated by the MTT as well as flow cytometry assays. Obtained results demonstrated promoted cell cytotoxicity of silibinin-loaded MNNPs (5-fold decrease in cell viability) compared to pure silibinin (3-fold decrease in cell viability) while had no significant cytotoxic effect on HEK-293 (normal cell line) cells, and the cellular uptake level of MNNPs by the HT-29 cell line was enhanced compared to the control group. In conclusion, silibinin-loaded MNNPs complex can be considered as an efficient treatment approach for colorectal cancer cells.

12.
BMC Complement Med Ther ; 23(1): 131, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098557

RESUMO

BACKGROUND: The physiological level of reactive oxygen species (ROS) is necessary for many cellular functions. However, during the in-vitro manipulations, cells face a high level of ROS, leading to reduced cell quality. Preventing this abnormal ROS level is a challenging task. Hence, here we evaluated the effect of sodium selenite supplementation on the antioxidant potential, stemness capacity, and differentiation of rat-derived Bone Marrow MSCs (rBM-MSCs) and planned to check our hypothesis on the molecular pathways and networks linked to sodium selenite's antioxidant properties. METHODS: MTT assay was used to assess the rBM-MSCs cells' viability following sodium selenite supplementation (concentrations of: 0.001, 0.01, 0.1, 1, 10 µM). The expression level of OCT-4, NANOG, and SIRT1 was explored using qPCR. The adipocyte differentiation capacity of MSCs was checked after Sodium Selenite treatment. The DCFH-DA assay was used to determine intracellular ROS levels. Sodium selenite-related expression of HIF-1α, GPX, SOD, TrxR, p-AKT, Nrf2, and p38 markers was determined using western blot. Significant findings were investigated by the String tool to picture the probable molecular network. RESULTS: Media supplemented with 0.1 µM sodium selenite helped to preserve rBM-MSCs multipotency and keep their surface markers presentation; this also reduced the ROS level and improved the rBM-MSCs' antioxidant and stemness capacity. We observed enhanced viability and reduced senescence for rBM-MSCs. Moreover, sodium selenite helped in rBM-MSCs cytoprotection by regulating the expression of HIF-1 of AKT, Nrf2, SOD, GPX, and TrxR markers. CONCLUSIONS: We showed that sodium selenite could help protect MSCs during in-vitro manipulations, probably via the Nrf2 pathway.


Assuntos
Células-Tronco Mesenquimais , Selenito de Sódio , Ratos , Animais , Selenito de Sódio/farmacologia , Selenito de Sódio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Cultivadas , Estresse Oxidativo , Transdução de Sinais , Diferenciação Celular , Superóxido Dismutase/metabolismo
13.
J Biol Eng ; 17(1): 27, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024910

RESUMO

Utilizing both medium enrichment and a thermos-responsive substrate to maintain the cell-to-cell junctions and extracellular matrix (ECM) intact, cell sheet technology has emerged as a ground-breaking approach. Investigating the possibility of using sodium selenite (as medium supplementation) and PCL-PEG-PCL (as vessel coating substrate) in the formation of the sheets from rat bone marrow-derived mesenchymal stem cells (rBMSCs) was the main goal of the present study. To this end, first, Polycaprolactone-co-Poly (ethylene glycol)-co-Polycaprolactone triblock copolymer (PCEC) was prepared by ring-opening copolymerization method and characterized by FTIR, 1 H NMR, and GPC. The sol-gel-sol phase transition temperature of the PCEC aqueous solutions with various concentrations was either measured. Next, rBMSCs were cultured on the PCEC, and let be expanded in five different media containing vitamin C (50 µg/ml), sodium selenite (0.1 µM), vitamin C and sodium selenite (50 µg/ml + 0.1 µM), Trolox, and routine medium. The proliferation of the cells exposed to each material was evaluated. Produced cell sheets were harvested from the polymer surface by temperature reduction and phenotypically analyzed via an inverted microscope, hematoxylin and eosin (H&E) staining, and field emission scanning electron microscopy (FESEM). Through the molecular level, the expression of the stemness-related genes (Sox2, Oct-4, Nanog), selenium-dependent enzymes (TRX, GPX-1), and aging regulator gene (Sirt1) were measured by q RT-PCR. Senescence in cell sheets was checked by beta-galactosidase assay. The results declared the improved ability of the rBMSCs for osteogenesis and adipogenesis in the presence of antioxidants vitamin C, sodium selenite, and Trolox in growth media. The data indicated that in the presence of vitamin C and sodium selenite, the quality of the cell sheet was risen by reducing the number of senescent cells and high transcription of the stemness genes. Monolayers produced by sodium selenite was in higher-quality than the ones produced by vitamin C.

14.
Iran J Kidney Dis ; 1(2): 73-78, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37060340

RESUMO

INTRODUCTION: Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent renal disorder that causes abnormal growth of renal epithelial cells. The excessive expansion of renal epithelial cells can lead to cyst formation that is associated with serious renal complications. The early diagnosis of ADPKD makes the control of the disease somehow attainable. Regarding the diagnostic potential of microRNAs (miRs) as robust clinical biomarkers, the present study aimed to examine the potential of urinary miRs in early diagnosis of ADPKD in asymptomatic patients. METHODS: Urine samples were obtained from 20 asymptomatic ADPKD patients and 20 healthy control individuals and the miR content of the samples was extracted and converted to cDNA for the qRT-PCR experiment. The relative expressions of miR-17, miR-21, miR-143, and miR-223 were evaluated in ADPKD cases and healthy individuals. Serum levels of kidney function markers were also evaluated in the study participants. RESULTS: The urine samples of patients with ADPKD demonstrated higher levels of miR-17, miR-21, and miR-143 along with a lower miR-223 level compared to the healthy control group. CONCLUSION: This study revealed the differential expression of the studied miRs in ADPKD patients. Detection of miRs in urinary samples might provide a useful platform for early diagnosis of ADPKD in asymptomatic patients.  DOI: 10.52547/ijkd.7281.


Assuntos
MicroRNAs , Rim Policístico Autossômico Dominante , Humanos , MicroRNAs/genética , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética , Rim , Biomarcadores/urina , Diagnóstico Precoce
15.
J Biomol Struct Dyn ; 41(19): 10037-10050, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36451602

RESUMO

Worldwide, breast cancer is the leading type of cancer among women. Overexpression of various prognostic indicators, including nuclear receptors, is linked to breast cancer features. To date, no effective drug has been discovered to block the proliferation of breast cancer cells. This study has been designed to discover target-based small molecular-like natural drug candidates that have anti-cancer potential without causing any serious side effects. A comprehensive substrate-based drug design was carried out to discover the potential plant compounds against the target breast cancer biomarkers including phytochemicals screening, active site identification, molecular docking, pharmacokinetic (PK) properties prediction, toxicity prediction, and molecular dynamics (MD) simulation approaches. Twenty plant compounds extracted from the rambutan (Nephelium lappaceum) were obtained from PubChem Database; and screened against the breast cancer biomarkers including estrogen receptor (ER), progesterone receptor (PR), and androgen receptor (AR). The best docking interaction was chosen based on the higher binding affinity. Analyzing the pharmacokinetic properties and toxicity prediction results indicated that the fifteen selected plant compounds have good potency without toxicity and are safe for humans. Four phytochemicals with a higher binding affinity were chosen for each breast cancer biomarker to study their stability in interaction with the target proteins using MD simulation. Among the above compounds, Ellagic acid showed the high binding affinity against all three breast cancer biomarkers.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias da Mama , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Humanos , Biomarcadores Tumorais , Neoplasias da Mama/tratamento farmacológico , Simulação de Acoplamento Molecular , Desenho de Fármacos , Simulação de Dinâmica Molecular
16.
Clin. transl. oncol. (Print) ; 24(7): 1372-1380, julio 2022. graf
Artigo em Inglês | IBECS | ID: ibc-203836

RESUMO

BackgroundAcute leukemia involving lymphocytic and myeloid cells is cancer with a high mortality rate. Swift and timely diagnosis might be a potential approach to improving patient prognosis and survival. The microRNA (miRNA) signatures are emerging nowadays for their promising diagnostic potential. MiRNA levels from bone marrow can be used as prognostic biomarkers.MethodsThe current study was designed to evaluate if the microRNAs and tumor suppressor genes (TSGs) profiling of hematopoietic bone marrow could help in acute leukemia early detection. Also, we assessed the DNA methyltransferase 3A (DNMT3A) expression and its possible epigenetic effects on miRNAs plus TSGs expression levels. The expression levels of ten miRNAs and four TSGs involved in acute lymphocytic leukemia (ALL) as well as acute myeloid leukemia (AML) were quantified in 43 and 40 bone marrow samples of ALL and AML patients in comparison with cancer-free subjects via real-time quantitative PCR (RT-qPCR). The receiver-operating-characteristic (ROC) analysis of miRNAs was performed in the study groups. Further, the correlation between the DNMT3A and TSGs was calculated.ResultsSignificant differences were detected in the bone marrow expression of miRNAs and TSGs (P < 0.05) between acute leukemia patients and healthy group. ROC analysis confirmed the ability of miR-30a, miR-101, miR-132, miR-129, miR-124, and miR-143 to discriminate both ALL and AML patients with an area under the ROC curve of ≥ 0.80 (P < 0.001) and high accuracy. The correlation between DNMT3A and P15/P16 TSGs revealed that DNMT3A plays a vital role in epigenetic control of TSGs expression. Our findings indicated that the downregulation of bone marrow miRNAs and TSGs was accompanied by acute leukemia development.ConclusionsThe authors conclude that this study could contribute to introducing useful biomarkers for acute leukemia diagnosis.


Assuntos
Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Medula Óssea/patologia , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Prognóstico , MicroRNAs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
17.
J Cell Biochem ; 123(7): 1157-1170, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35722966

RESUMO

In type 2 diabetes, dyslipidemia and increased serum free fatty acids (FFAs) exacerbate the development of the disease through a negative effect on insulin secretion. Adipose-derived mesenchymal stem cells (AdMSCs) play a key role in regenerative medicine, and these cells can potentially be applied as novel therapeutic resources in the treatment of diabetes. In this study, AdMSCs were treated with diabetic or nondiabetic serum FFAs isolated from women of menopausal age. Serum FFAs were analyzed using gas-liquid chromatography. The expression level of the stemness markers CD49e and CD90 and the Wnt signaling target genes Axin-2 and c-Myc were evaluated using real-time PCR. The proliferation rate and colony formation were also assessed using a BrdU assay and crystal violet staining, respectively. The level of glutathione was assessed using cell fluorescence staining. Compared to nondiabetic serum, diabetic serum contained a higher percentage of oleate (1.5-fold, p < 0.01). In comparison with nondiabetic FFAs, diabetic FFAs demonstrated decreasing effects on the expression of CD90 (-51%, p < 0.001) and c-Myc (-48%, p < 0.05), and proliferation rate (-35%, p < 0.001), colony formation capacity (-50%, p < 0.01), and GSH levels (-62%, p < 0.05). The negative effect of the FFAs of diabetic serum on the stemness characteristics may impair the regenerative capabilities of AdMSCs.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Mesenquimais , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Feminino , Humanos , Secreção de Insulina , Células-Tronco Mesenquimais/metabolismo
18.
J Mater Sci Mater Med ; 33(5): 41, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35507219

RESUMO

Until now, a few studies have been conducted on the destructive effects of TiO2 NPs in living organisms, and studies on the toxicity of TiO2 NPs are still in the beginning phases. Because of the widespread use of TiO2 NPs in all areas of human life, it is essential to study their profound and fundamental toxic effects on each organ and body cell. Herein, we evaluate the effect of exposure to TiO2 NPs on in vitro models derived from the rat bone marrow and adipose tissues. Exposure to TiO2 NPs at 100 and 200 µg/ml exhibited cytotoxicity for the rat bone marrow mesenchymal stem cells (rBMSCs) and rat adipose mesenchymal stem cells (rATSC), respectively. Additionally, reduced rBMSCs and rATSCs frequencies in the S phase of the cell cycle. Moreover, TiO2 NPs enhanced the activity of cellular senescence-associated ß-galactosidase in both model cells. Significantly higher relative expression of aging-related genes P53 and NF-kB (p < 0.05) and lower expression levels of anti-aging-related genes Nanog and SIRT1 were found in the treated cells (p < 0.05). Colony-forming and DAPI staining showed the reduction of cell growth and DNA damage in both rBMSCs and rATSCs. Our findings along with other similar findings showed that TiO2 NPs probably have negative effects on the cell growth, prompt the cells for entry into proliferation stop, DNA damage, and trigger the aging process. Graphical abstract.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Animais , Dano ao DNA , Nanopartículas Metálicas/toxicidade , NF-kappa B/metabolismo , Nanopartículas/toxicidade , Ratos , Titânio/toxicidade
19.
Clin Transl Oncol ; 24(7): 1372-1380, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35247197

RESUMO

BACKGROUND: Acute leukemia involving lymphocytic and myeloid cells is cancer with a high mortality rate. Swift and timely diagnosis might be a potential approach to improving patient prognosis and survival. The microRNA (miRNA) signatures are emerging nowadays for their promising diagnostic potential. MiRNA levels from bone marrow can be used as prognostic biomarkers. METHODS: The current study was designed to evaluate if the microRNAs and tumor suppressor genes (TSGs) profiling of hematopoietic bone marrow could help in acute leukemia early detection. Also, we assessed the DNA methyltransferase 3A (DNMT3A) expression and its possible epigenetic effects on miRNAs plus TSGs expression levels. The expression levels of ten miRNAs and four TSGs involved in acute lymphocytic leukemia (ALL) as well as acute myeloid leukemia (AML) were quantified in 43 and 40 bone marrow samples of ALL and AML patients in comparison with cancer-free subjects via real-time quantitative PCR (RT-qPCR). The receiver-operating-characteristic (ROC) analysis of miRNAs was performed in the study groups. Further, the correlation between the DNMT3A and TSGs was calculated. RESULTS: Significant differences were detected in the bone marrow expression of miRNAs and TSGs (P < 0.05) between acute leukemia patients and healthy group. ROC analysis confirmed the ability of miR-30a, miR-101, miR-132, miR-129, miR-124, and miR-143 to discriminate both ALL and AML patients with an area under the ROC curve of ≥ 0.80 (P < 0.001) and high accuracy. The correlation between DNMT3A and P15/P16 TSGs revealed that DNMT3A plays a vital role in epigenetic control of TSGs expression. Our findings indicated that the downregulation of bone marrow miRNAs and TSGs was accompanied by acute leukemia development. CONCLUSIONS: The authors conclude that this study could contribute to introducing useful biomarkers for acute leukemia diagnosis.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Medula Óssea/patologia , Detecção Precoce de Câncer , Genes Supressores de Tumor , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , MicroRNAs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Prognóstico
20.
Curr Drug Deliv ; 19(5): 600-613, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34391378

RESUMO

BACKGROUND: Cancer, which is defined as abnormal cell growth, is one of the biggest public health problems in the world. Natural compounds, such as polyphenols, are used as chemo- preventive and chemotherapeutic agents in different types of cancer owing to their antioxidant, antineoplastic, and cytotoxic properties. To improve their bioavailability and releasing behavior, hydrogel systems with high drug loadingg, stability and hydrophilic nature have been designed. OBJECTIVE: We conducted the present study to investigate the anticancer effects of curcumin and chrysin loaded in the alginate-chitosan hydrogel on breast cancer (T47D) and lung cancer (A549). METHODS: The curcumin-chrysin-loaded alginate-chitosan hydrogels were prepared through the ionic gelation mechanism utilizing CaCl2. The prepared hydrogels were studied by using the Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The MTT and DAPI staining assays were employed for cytotoxicity and apoptosis studies of curcumin-chrysin- loaded alginate-chitosan hydrogels. The effects of the curcumin-chrysin-loaded alginate-chitosan hydrogels on the cell cycle of cell lines T47D and A549 were also evaluated using the propidium iodide staining. RESULTS: The curcumin-chrysin-loaded alginate-chitosan hydrogels could significantly (p<0.05) reduce the viability and induce apoptosis. Morover G2/M causes arrest of the cell cycle in both A549 and T47D cell lines. CONCLUSION: The alginate-chitosan hydrogels could work best as an enhanced anticancer drug delivery system.


Assuntos
Antineoplásicos , Neoplasias da Mama , Quitosana , Curcumina , Alginatos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular , Quitosana/química , Curcumina/química , Curcumina/farmacologia , Portadores de Fármacos/química , Feminino , Flavonoides , Humanos , Hidrogéis/química , Pulmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...